Straight-chain fatty acids are dispensable in the myxobacterium Myxococcus xanthus for vegetative growth and fruiting body formation.
نویسندگان
چکیده
Inactivation of the MXAN_0853 gene blocked the production in Myxococcus xanthus of straight-chain fatty acids which otherwise represent 30% of total fatty acids. Despite this drastic change in the fatty acid profile, no change in phenotype could be observed, which contrasts with previous interpretations of the role of straight-chain fatty acids in the organism's development.
منابع مشابه
Isoprenoids are essential for fruiting body formation in Myxococcus xanthus.
It was recently shown that Myxococcus xanthus harbors an alternative and reversible biosynthetic pathway to isovaleryl coenzyme A (CoA) branching from 3-hydroxy-3-methylglutaryl-CoA. Analyses of various mutants in these pathways for fatty acid profiles and fruiting body formation revealed for the first time the importance of isoprenoids for myxobacterial development.
متن کاملAdenylate energy charge during fruiting body formation by Myxococcus xanthus.
The adenylate energy charge of developing Myxococcus xanthus cells was measured. The energy charge of vegetative cells (0.81) does not change significantly during the course of fruiting body formation. Furthermore, myxospores, which are resistant, resting cells present in the fruiting body, have a relatively high energy charge (0.73).
متن کامل3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase is involved in biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation.
Isovaleryl-coenzyme A (IV-CoA) is the starting unit for some secondary metabolites and iso-odd fatty acids in several bacteria. According to textbook biochemistry, IV-CoA is derived from leucine degradation, but recently an alternative pathway that branches from the well-known mevalonate-dependent isoprenoid biosynthesis has been described for myxobacteria. A double mutant was constructed in My...
متن کاملSigF, a new sigma factor required for a motility system of Myxococcus xanthus.
A new sigma factor, SigF, was identified from the social and developmental bacterium Myxococcus xanthus. SigF is required for fruiting body formation during development as well as social motility during vegetative growth. Analysis of gene expression indicates that it is possible that the sigF gene is involved in regulation of an unidentified gene for social motility.
متن کاملGrowth of Myxococcus xanthus in continuous-flow-cell bioreactors as a method for studying development.
Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the indi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 188 15 شماره
صفحات -
تاریخ انتشار 2006